Пространственные и динамические модели. Статические и динамические модели. Методы интерполяции по ареалам

Трехмерные картографические изображения являются электронными картами более высокого уровня и представляют собой визуализированные на средствах компьютерных систем моделирования пространственные образы основных элементов и объектов местности. Они предназначены для использования в системах управления и навигации (наземной и воздушной) при анализе местности, решении расчетных задач и моделировании, проектировании инженерных сооружений, мониторинге окружающей среды.

Технология моделирования местности позволяет создавать наглядные и измеримые перспективные изображения, весьма похожие на реальную местность. Их включение по определенному сценарию в компьютерный фильм позволяет при его просмотре "увидеть" местность с разных точек съемки, в различных условиях освещенности, для различных времен года и суток (статическая модель) или "пролететь" над ней по заданным или произвольным траекториям движения и скорости полета - (динамическая модель).

Использование компьютерных средств, в состав которых входят векторные или растровые дисплеи, позволяющие осуществлять в своих буферных устройствах преобразование входной цифровой информации в заданный кадр, требует предварительного создания в качестве такой информации цифровых пространственных моделей местности (ПММ).

Цифровые ПММ по своей сущности представляют собой совокупность цифровых семантических, синтаксических и структурных данных, записанных на машинный носитель, предназначенных для воспроизведения (визуализации) объемных образов местности и топографических объектов в соответствии с заданными условиями наблюдения (обзора) земной поверхности.

Исходными данными для создания цифровых ПММ могут служить фотоснимки, картографические материалы, топографические и цифровые карты, планы городов и справочная информация, обеспечивающие получение данных о положении, форме, размерах, цвете, и назначении объектов. При этом полнота ПММ будет определяться информативностью используемых фотоснимков, а точность - точностью исходных картографических материалов.

Технические средства и методы создания ПММ

Разработка технических средств и методов создания цифровых ПММ является непростой научно-технической проблемой. Решение этой проблемы предполагает:

Разработку аппаратно-программных средств получения первичной трехмерной цифровой информации об объектах местности по фотоснимкам и картматериалам;
- создание системы трехмерных картографических условных знаков;
- разработку методов формирования цифровых ПММ с использованием первичной картографической цифровой информации и фотоснимков;
- разработку экспертной системы формирования содержания ПММ;
- разработку методов организации цифровых данных в банке ПММ и принципов построения банка ПММ.



Разработка аппаратно-программных средств получения первичной трехмерной цифровой информации об объектах местности по фотоснимкам и картматериалам обусловлена следующими принципиальными особенностями:

Более высокими, по сравнению с традиционными ЦКМ, требованиями к цифровым ПММ по полноте и точности;
- использованием в качестве исходных дешифровочных фотоснимков, получаемых кадровыми, панорамными, щелевыми и ПЗС съемочными системами и не предназначенных для получения точной измерительной информации об объектах местности.

Создание системы трехмерных картографических условных знаков является принципиально новой задачей современной цифровой картографии. Ее суть заключается в создании библиотеки условных знаков, близких к реальному изображению объектов местности.

Методы формирования цифровых ПММ с использованием первичной цифровой картографической информации и фотоснимков должны обеспечить, с одной стороны, оперативность их визуализации в буферных устройствах компьютерных систем, а, с другой стороны, требуемые полноту, точность и наглядность трехмерного изображения.

Исследования, выполняемые в настоящее время, показали, что для получения цифровых ПММ, в зависимости от состава исходных данных могут быть применимы методы, использующие:

Цифровую картографическую информацию;
- цифровую картографическую информацию и фотоснимки;
- фотоснимки.

Наиболее перспективными представляются методы , использующие цифровую картографическую информацию и фотоснимки. Основными из них могут быть методы создания цифровых ПММ различной полноты и точности: по фотоснимкам и ЦМР; по фотоснимкам и ЦКМ; по фотоснимкам и ЦММ.

Разработка экспертной системы формирования содержания ПММ должна обеспечить решение задач проектирования пространственных изображений путем отбора объектового состава, его обобщения и символизации и вывода на экран отображения в требуемой картографической проекции. При этом потребуется разработать методику описания не только условных знаков, но и пространственно-логических отношений между ними.

Решение задачи разработки методов организации цифровых данных в банке ПММ и принципов построения банка ПММ определяется спецификой пространственных изображений, форматами представления данных. Вполне возможно, что потребуется создавать пространственно-временной банк с четырехмерными моделированием (Х,У,Н,t), где будут генерироваться ПММ в режиме реального времени.

Технические и программные средства отображения и анализа ПММ

Второй проблемой является разработка технических и программных средств отображения и анализа цифровых ПММ. Решение данной проблемы предполагает:

Разработку технических средств отображения и анализа ПММ;
- разработку способов решения расчетных задач.

Разработка технических и программных средств отображения и анализа цифровых ПММ потребует использования существующих графических рабочих станций, для которых должно быть создано специальное программное обеспечение (СПО).

Разработка способов решения расчетных задач является прикладной задачей, возникающей в процессе использования цифровых ПММ в практических целях. Состав и содержание данных задач будут определяться конкретными потребителями ПММ.

Определение. Под динамической системой понимается объект, находящийся в каждый момент времени tT в одном из возможных состояний Z и способный переходить во времени из одного состояния в другое под действием внешних и внутренних причин.

Динамическая система как математический объект содержит в своем описании следующие механизмы:

  • - описание изменения состояний под действием внутренних причин (без вмешательства внешней среды);
  • - описание приема входного сигнала и изменения состояния под действием этого сигнала (модель в виде функции перехода);
  • - описание формирования выходного сигнала или реакции динамической системы на внутренние и внешние причины изменения состояний (модель в виде функции выхода).

Аргументами входных и выходных сигналов системы могут служить время, пространственные координаты, а также некоторые переменные, используемые в преобразованиях Лапласа, Фурье и других.

В простейшем случае оператор системы преобразует векторную функцию Х(t) в векторную функцию Y(t). Модели подобного типа называются динамическими (временными).

Динамические модели делятся на стационарные, когда структура и свойства оператора W(t) не изменяются со временем, и на нестационарные.

Реакция стационарной системы на любой сигнал зависит только от интервала времени между моментом начала действия входного возмущения и данным моментом времени. Процесс преобразования входных сигналов не зависит от сдвига входных сигналов во времени.

Реакция нестационарной системы зависит как от текущего времени, так и от момента приложения входного сигнала. В этом случае при сдвиге входного сигнала во времени (без изменения его формы) выходные сигналы не только сдвигаются во времени, но и изменяют форму.

Динамические модели делятся на модели безынерционных и инерционных (модели с запаздыванием) систем.

Безынерционные модели соответствуют системам, в которых оператор W определяет зависимость выходных величин от входных в один и тот же момент времени - y=W(Х,t).

В инерционных системах значения выходных параметров зависят не только от настоящих, но и предыдущих значений переменных

Y=W(Z,хt,хt-1,…,хt-k).

Инерционные модели еще называют моделями с памятью. Оператор преобразований может содержать параметры, которые обычно неизвестны - Y=W(,Z,Х), где ={1,2,…,k} - вектор параметров.

Важнейшим признаком структуры оператора является линейность или нелинейность по отношению к входным сигналам.

Для линейных систем всегда справедлив принцип суперпозиции, который состоит в том, что линейной комбинации произвольных входных сигналов ставится в соответствие та же линейная комбинация сигналов на выходе системы

Математическую модель с использованием линейного оператора можно записать в виде Y=WХ.

Если условие (2.1) не выполняется, модель называется нелинейной.

Классифицируются динамические модели в соответствии с тем, какие математические операции используются в операторе. Можно выделить: алгебраические, функциональные (типа интеграла свертки), дифференциальные, конечно-разностные модели и др.

Одномерной моделью называется такая, у которой и входной сигнал, и отклик одновременно являются величинами скалярными.

В зависимости от размерности параметра модели подразделяются на одно- и многопараметрические. Классификация моделей может быть продолжена также в зависимости от видов входных и выходных сигналов.

Информации

Особенности пространственно-временной

СВЯЗИ ПОКАЗАТЕЛЕЙ

МНОГОФАКТОРНЫЕ ДИНАМИЧЕСКИЕ МОДЕЛИ

Многофакторные динамические модели связи показателей строятся по пространственно-временным выборкам , которые представляют собой множество данных о значениях признаков совокупности объектов за ряд периодов (моментов) времени.

Пространственные выборки формируются путем объединения за ряд лет (периодов) пространственных выборок, т.е. совокупности объектов, относящихся к одинаковым периодам времени. Используются в случае небольших выборок, т.е. краткой предыстории развития объекта.

Динамические выборки образуются посредством объединения динамических рядов отдельных объектов в случае длительной предыстории , т.е. больших выборок.

Классификация способов формирования выборок условна, т.к. зависит от цели моделирования, от устойчивости выявленных закономерностей, от степени однородности объектов, от числа факторов. В большинстве случае преимущество отдается первому способу.

Динамические ряды с длительной предысторией рассматриваются как ряды, на основе которых можно строить модели взаимосвязи показателей различных объектов достаточно высокого качества.

Динамические модели связи показателей могут быть:

· пространственными, т.е. моделирующими связи показателей по всем объектам, рассматриваемым в определенный момент (интервал) времени;

· динамическими, которые строятся по совокупности реализаций одного объекта за все периоды (моменты) времени;

· пространственно-динамическими, которые формируются по всем объектам за все периоды (моменты) времени.

Модели динамики показателейгруппируют по следующим видам:

1) одномерныемодели динамики: характеризуются как модели некоторого показателя данного объекта;

2) многомерные модели динамики одного объекта: моделируют несколько показателей объекта;

3) многомерные модели динамики совокупности объектов: моделируют несколько показателей системы объектов.

Соответственно, модели связи используются для пространственной экстраполяции (для прогнозирования значений результативных показателей новых объектов по значениям факторных признаков), модели динамики – для динамической экстраполяции (для прогнозирования зависимых переменных).

Можно выделить основные задачи использования пространственно-временной информации.

1. В случае краткой предыстории: выявление пространственных связей между показателями, т.е. изучение структуры связей между объектами для повышения точности и надежности моделирования этих закономерностей.

2. В случае длительной предыстории: аппроксимация закономерностей изменения показателей в целях объяснения их поведения и прогнозирования возможных состояний.

Динамический объект - это физическое тело, техническое устройство или процесс, имеющее входы, точки возможного приложения внешних воздействий, и воспринимающие эти воздействия, и выходы, точки, значения физических величин в которых характеризуют состояние объекта. Объект способен реагировать на внешние воздействия изменением своего внутреннего состояния и выходных величин, характеризующих его состояние. Воздействие на объект, и его реакция в общем случае изменяются с течением времени, они наблюдаемы, т.е. могут быть измерены соответствующими приборами. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов.

Если вчитаться и вдуматься в приведенное выше нестрогое определение, можно увидеть, что отдельно динамический объект в "чистом" виде, как вещь в себе, не существует: для описания объекта модель должна содержать еще и 4 источника воздействий (генераторы):

Среду и механизм подачи на него этих воздействий

Объект должен иметь протяженность в пространств

Функционировать во времени

В модели должны быть измерительные устройства.

Воздействием на объект может быть некоторая физическая величина: сила, температура, давление, электрическое напряжение и другие физические величины или совокупность нескольких величин, а реакцией, откликом объекта на воздействие, может быть движение в пространстве, например смещение или скорость, изменение температуры, силы тока и др.

Для линейных моделей динамических объектов справедлив принцип суперпозиции (наложения), т.е. реакция на совокупность воздействий равна сумме реакций на каждое из них, а масштабному изменению воздействия соответствует пропорциональное изменение реакции на него. Одно воздействие может быть приложено к нескольким объектам или нескольким элементам объекта.

Понятие динамический объект содержит и выражает причинно-следственную связь между воздействием на него и его реакцией. Например, между силой, приложенной к массивному телу, и его положением и движением, между электрическим напряжением, приложенным к элементу, и током, протекающим в нем.

В общем случае динамические объекты являются нелинейными, в том числе они могут обладать и дискретностью, например, изменять быстро структуру при достижении воздействием некоторого уровня. Но обычно большую часть времени функционирования динамические объекты непрерывны во времени и при малых сигналах они линейны. Поэтому ниже основное внимание будет уделено именно линейным непрерывным динамическим объектам.

Пример непрерывности: автомобиль, двигающийся по дороге - непрерывно функционирующий во времени объект, его положение зависит от времени непрерывно. Значительную часть времени автомобиль может рассматриваться как линейный объект, объект, функционирующий в линейном режиме. И только при авариях, столкновениях, когда, например, автомобиль разрушается, требуется описание его как нелинейного объекта.

Линейность и непрерывность во времени выходной величины объекта просто удобный частный, но важный случай, позволяющий достаточно просто рассмотреть значительное число свойств динамического объекта.

С другой стороны, если объект характеризуется процессами, протекающими в разных масштабах времени, то во многих случаях допустимо и полезно заменить наибыстрейшие процессы их дискретным во времени изменением.

Настоящая работа посвящена, прежде всего, линейным моделям динамических объектов при детерминированных воздействиях. Гладкие детерминированные воздействия произвольного вида могут быть генерированы путем дискретного, сравнительно редкого аддитивного действия на младшие производные воздействия дозированными дельта - функциями. Такие модели состоятельны при сравнительно малых воздействиях для весьма широкого класса реальных объектов. Например, именно так формируются сигналы управления в компьютерных играх, имитирующих управление автомобилем или самолетом с клавиатуры. Случайные воздействия пока остаются за рамками рассмотрения.

Состоятельность линейной модели динамического объекта определяется, в частности тем, что является ли его выходная величина достаточно гладкой, т.е. является ли она и несколько ее младших производных по времени непрерывными. Дело в том, что выходные величины реальных объектов изменяются достаточно плавно во времени. Например, самолет не может мгновенно переместиться из одной точки пространства в другую. Более того он, как и любое массивное тело, не может скачком изменить свою скорость, на это потребовалась бы бесконечная мощность. Но ускорение самолета или автомобиля может изменяться скачком.

Понятие динамический объект вовсе не всесторонне определяет физический объект. Например, описание автомобиля как динамического объекта позволяет ответить на вопросы, как быстро он разгоняется и тормозит, как плавно двигается по неровной дороге и кочкам, какие воздействия будут испытывать водитель и пассажиры машины при движении по дороге, на какую гору он может подняться и т.п. Но в такой модели безразлично, какой цвет у автомобиля, не важна его цена и др., постольку, они не влияют на разгон автомобиля. Модель должна отражать главные с точки зрения некоторого критерия или совокупности критериев свойства моделируемого объекта и пренебрегать второстепенными его свойствами. Иначе она будет чрезмерно сложной, что затруднит анализ интересующих исследователя свойств.

С дугой стороны, если исследователя интересует именно изменение во времени цвета автомобиля, вызываемое различными факторами, например солнечным светом или старением, то и для этого случая может быть составлено и решено соответствующее дифференциальное уравнение.

Реальные объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействия от некоторого источника, но и сами воздействуют на этот источник, противодействуют ему. Выходная величина объекта управления во многих случаях является входной для другого, последующего динамического объекта, которая также, в свою очередь, может влиять на режим работы объекта. Т.о. связи динамического объекта с внешним, по отношению к нему миром, двунаправленные.

Часто, при решении многих задач, рассматривается поведение динамического объекта только во времени, а его пространственные характеристики, в случаях, если они непосредственно не интересуют исследователя, не рассматриваются и не учитываются, за исключением упрощенного учета задержки сигнала, которая может быть обусловлена временем распространения воздействия в пространстве от источника к приемнику.

Динамические объекты описываются дифференциальными уравнениями (системой дифференциальных уравнений). Во многих практически важных случаях это линейное, обыкновенное дифференциальное уравнение (ОДУ) или система ОДУ. Многообразие видов динамических объектов определяет высокую значимость дифференциальных уравнений как универсального математического аппарата их описания, позволяющего проводить теоретические исследования (анализ) этих объектов и на основе такого анализа конструировать модели и строить полезные для людей системы, приборы и устройства, объяснять устройство окружающего нас мира, по крайней мере, в масштабах макромира (не микро- и не мега-).

Модель динамического объекта состоятельна, если она адекватна, соответствует реальному динамическому объекту. Это соответствие ограничивается некоторой пространственно-временной областью и диапазоном воздействий.

Модель динамического объекта реализуема, если можно построить реальный объект, поведение которого под влиянием воздействий в некоторой пространственно-временной области и при некотором классе и диапазоне входных воздействий соответствует поведению модели.

Широта классов, многообразие структур динамических объектов может вызвать предположение, что все они вместе обладают неисчислимым набором свойств. Однако попытка охватить и понять эти свойства, и принципы работы динамических объектов, во всем их многообразии вовсе не столь безнадежна.

Дело в том, что если динамические объекты адекватно описываются дифференциальными уравнениями, а это именно так, то совокупность свойств, характеризующих динамический объект любого рода, определяется совокупностью свойств характеризующих его дифференциальное уравнение. Можно утверждать что, по крайней мере, для линейных объектов таких основных свойств существует довольно ограниченное и сравнительно небольшое число, а поэтому ограничен и набор основных свойств динамических объектов. Опираясь на эти свойства и комбинируя элементы, обладающие ими, можно построить динамические объекты с самыми разнообразными характеристиками.

Итак, основные свойства динамических объектов выведены теоретически из их дифференциальных уравнений и соотнесены с поведением соответствующих реальных объектов.

Динамический объект - это объект, воспринимающий изменяющиеся во времени внешние воздействия и реагирующий на них изменением выходной величины. Объект имеет внутреннюю структуру, состоящую из взаимодействующих динамических элементов. Иерархия объектов ограничена снизу простейшими моделями и опирается на их свойства.

Воздействием на объект, как и его реакцией, являются физические, измеряемые величины, это может быть и совокупность физических величин, математически описываемая векторами.

При описании динамических объектов с помощью дифференциальных уравнений неявно предполагается, что каждый элемент динамического объекта получает и расходует столько энергии (такую мощность), сколько ему требуется для нормальной работы в соответствии с его назначением по отклику на поступающие воздействия. Часть этой энергии объект может получать от входного воздействия и это описывается дифференциальным уравнением явно, другая часть может поступать от сторонних источников и в дифференциальном уравнении не фигурировать. Такой подход существенно упрощает анализ модели, не искажая свойств элементов и всего объекта. При необходимости процесс обмена энергией с внешней средой может быть подробно описан в явной форме и это будут также дифференциальные и алгебраические уравнения.

В некоторых частных случаях источником всей энергии (мощности) для выходного сигнала объекта является входное воздействие: рычаг, разгон массивного тела силой, пассивная электрическая цепь и др.

В общем случае воздействие может рассматриваться как управляющее потоками энергии для получения необходимой мощности выходного сигнала: усилитель синусоидального сигнала, просто идеальный усилитель и др.

Динамические объекты, как и их элементы, которые также можно рассматривать как динамические объекты, не только воспринимают воздействие от его источника, но и сами воздействуют на этот

Форма пространственной конфигурации кабель-троса при буксировке подводного аппарата зависит от режима движения (скорости относительно воды, распределения течений по глубине), особенностей

аппарата и характеристик кабель-троса (диаметр, длина, плавучесть и т. п.). Особенность формы кабель-троса при движении комплекса вдоль заданной линии профиля заключается в том, что по его длине ридианальные углы в изменяются в широких пределах (так же, как и дополнительные меридианальные углы ), но азимутальные углы и углы гидродинамической скорости к в любой точке троса имеют малые значения. Это допущение позволяет представить уравнения связи гибкой нити для данного случая, выраженные в проекциях орта касательной на неподвижные оси, следующим образом:

а уравнения, полученные из условия равновесия сил на элементарном отрезке гибкой нити в стационарном режиме, записать в виде

Нелинейные обыкновенные дифференциальные уравнения (7.30) и (7.31) представляют собой математическое описание статической пространственной конфигурации кабель-троса. Ниже приводятся некоторые результаты исследований, выполненных путем решения уравнений (7.30) и (7.31) на ЦВМ.

На рис. 7.10 приведены кривые зависимости натяжения Т, глубины и расстояния между ПА и судном от скорости буксировки при фиксированной длине кабель-троса 6000 м. Натяжение в точке крепления к судну (у буксирной лебедки) уменьшается с увеличением скорости до 4 м/с и нарастает при дальнейшем увеличении скорости буксировки. При этом ПА всплывает с глубины 6000 до 1000 м, но расстояние между аппаратом и судном увеличивается.

Рис. 7.11 показывает, как изменяются натяжение в точке крепления к судну, длина кабель-троса и расстояние между ПА и судном с увеличением скорости буксировки при поддержании постоянной

глубины погружения ПА на 6000 м. С ростом скорости буксировки до 2 м/с необходимо увеличить длину кабель-троса до 13000 м. Вид статических конфигураций кабель-троса длиной 6000 м в вертикальной плоскости при скоростях буксировки (кривые 1, 2, 3 соответственно) иллюстрирует рис. 7.12.

Рис. 7.10. Статические параметры движения кабель-троса в зависимости от скорости буксировки.

Рис. 7.11. Статические параметры движения кабель-троса при постоянной глубине погружения ПА.

Особенность движения кабель-троса при буксировке ПА заключается в том, что оно происходит с малыми боковыми и вертикальными скоростями по сравнению со скоростью продольного перемещения кабеля. Для любой его точки соблюдаются условия и скорость поступательного продольного движения практически никогда не превосходит м/с. Кроме того, стремятся, чтобы буксировка протекала плавно, без резких усилий в кабеле. При этих условиях допускается раздельный анализ динамики движения кабель-троса в вертикальной (продольное движение) и горизонтальной (боковое движение) плоскостях. Уравнения продольного движения записываются в виде

а бокового

Все коэффициенты рассчитываются при постоянных значениях гидродинамической скорости и ее касательной составляющей и неизменном во времени натяжении кабель-троса, определяемого выражением

Дифференциальные уравнения в частных производных (7.32) и (7.33) решаются при начальных , а также граничных условиях на нижнем и верхнем концах кабель-троса, причем последние играют роль управляющих воздействий и складываются из соответствующих проекций скорости движения судна-буксира и изменения длины кабеля в результате работы буксирной лебедки:

Статьи по теме